日志档案

发表于 2018/5/3 11:01:12

0

标签: 无标签

人工智能所创造的东西拥有知识产权吗?

近来,随着计算机程序“阿尔法围棋(AlphaGo)”战胜人类顶级的围棋高手,以及机器人绘画、写作和谱曲的出现,有关人工智能与著作权保护的问题获得了关注。“人工智能”与基因工程和纳米科学并称为二十一世纪三大尖端技术之一,虽然“人工智能至今尚无统一的定义,要给人工智能下个准确的定义比较困难”,但一般认为它描述了计算机模拟人的某些思维过程和智能行为(如学习、思考、推理、规划等)的过程。[1]2既然人工智能在表面上缩小了纯粹机械活动与人类思维之间的差距,利用人工智能生成的内容似乎就有了智力创作的痕迹。那么,对这些内容在著作权法中如何定性?它们能否作为著作权法意义上的作品受到保护?这一问题涉与著作权法的未来发展息息相关,实有深入研究的必要。

1

研究范围的确定:

考察相关内容的表现形式




人工智能生成的内容是否应被认定为作品,当然是应当进行深入研究的问题。但是,并非所有由人工智能产生的内容都需要被纳入讨论范围,因为在许多情况下,对相关内容法律属性的判断与其由人工智能产生的事实并无关系,运用著作权法的基本原理就可以获得圆满的解决。同时,对上述问题的讨论也必须有前后顺序之分,否则将使讨论丧失焦点和重点。

在对人工智能生成内容的定性进行研究之前,应当排除哪些即使源于人类,也被公认为不可能构成作品的内容。因为人工智能只是生成相同内容的技术手段,围绕人工智能进行的著作权研究,应当针对人工智能带来的特殊问题——人工智能生成内容的过程是否属于创作行为,该内容是否构成作品。但这一特殊问题依赖于一个前提——人工智能生成的内容符合除“由人创作”之外的作品构成要件。如果相同的内容即使源于人类,也不可能构成作品,则对上述问题就丧失了研究的必要。

在澳大利亚发生的“Telstra公司诉电话号码出版公司案”中,原告因被告复制其编制的电话号码簿而起诉被告侵权。法院认为该电话号码簿不受澳大利亚《版权法》的保护,理由之一在于“它不是人类创作的结果,而是由计算机生成的”。该案也被一些学者在研究人工智能生成内容的著作权问题时所引用。

这样的讨论是缺乏价值的。如果源自人类的相同内容都不属于作品,则无论该内容是源自于动物还是人工智能,都不可能被认定为作品,此时仅需要讨论作品的范围是否应当扩充,或者是否应当在著作权法中增设邻接权,以保护此种不构成作品的内容,但显然与人工智能无关。只有当源自人类的相同内容属于作品时,才有必要讨论由人工智能生成的该内容能否被认定为作品。例如,“阿尔法围棋”程序强大无比,其使用的许多招数可能都是人类望尘莫及的,但它产生的仅是围棋的下法,并不属于“文学、艺术和科学领域内”的表达,其表现形式无法被归入任何一类著作权法所规定的作品。即使一位围棋高手基于巧合,经过独立思考,下出了同样的棋局,也不会被认为创作了作品。因此讨论“阿尔法围棋”程序所产生内容的著作权问题是没有意义的。这正如当一只猕猴抢走了摄影师的相机,模仿人类动作进行拍摄,如果其没有打开镜头盖就按下快门,以至于拍出的是无法从中识别任何事物的一片漆黑,则即使该行为由人实施也不可能形成作品,自然也就不需要考虑该照片作为“动物智能”生成内容的著作权问题。但当猕猴摆了姿势进行自拍,且拍成了一张露齿微笑的猕猴照片时,情况就完全不同:由于其表现形式与摄影作品相符合,如果摄影师并未披露该照片的拍摄过程,人们当然会认为照片是由拍摄师抓拍猕猴形成的,属于摄影作品;在得知它是由猕猴自拍之后,才有必要讨论它能否被认定为作品。

在上文提及的“Telstra公司诉电话号码出版公司案”中,即使涉案的电话号码簿确实是利用人工智能生成的,但由于它仅是将所有电话号码按照用户姓名的字母顺序排列,即使由某人在不借助任何程序的情况下以纯手工方式编成,也不可能构成作品(汇编作品),因此“人工智能”并非认定号码簿是否构成作品的因素,以此案讨论人工智能生成内容的著作权问题也缺乏合理性。与之相反的是,目前在网络中流行的一些美图软件利用“深度神经网络”的人工智能,可以将照片或图片变为印象派、野兽派等各种风格。对于进行风格转换后的图片而言,如果人们并不知道它是美图软件生成的,而以为是人工绘制的,也就是该图片源于画家之手,则当然会认定它是美术作品,即基于原作品形成的演绎作品。因为从表现形式上看,它以原作品为基础,以新的色彩与线条形成了有别于原作品的艺术造型,体现了画家富有个性的独特选择与判断。对于此类内容,在明确了其由人工智能产生,而非源于画家之后,需要讨论其是否构成作品。

鉴于此,在研究人工智能生成的内容是否构成作品时,需要首先考虑的问题是:在相同内容源自于人类创作的情况下,该内容在表现形式上是否构成作品。所谓“在表现形式上构成”,是指仅从相关内容的外部表现形式判断它与人类作品是否相同,并不考虑该内容的形成过程是否符合独创性的要求(这是下一步考虑的问题)。如果相关内容是从无到有产生的,也就是被主张为完全原创的作品(而非演绎作品),则应当判断其表现形式是否符合著作权法对各类作品的定义。例如,上文所述的“阿尔法围棋”程序下出的棋局不符合著作权法对任何类型作品要求的表达形式,可以直接将其排除出讨论范围。但是,对于采用了人工智能的绘画机器人绘制的肖像画或风景画而言,在形式上就属于“以线条、色彩或其他方式构成的审美意义的平面造型艺术”。同样道理,由“新闻写作软件”生成的新闻报道,以及由软件生成的音乐,在形式上具备著作权法对文字作品及音乐作品要求。此时就应将其纳入研究范围,进一步分析其是否构成作品。

如果相关内容是基于原有作品产生,即被主张为演绎作品,则应当判断其表达与原作品是否已存在实质性差异。例如,智能软件将简谱自动转换成五线谱,是对同一音乐作品在记录方式上的变更,并没有产生新的音乐作品。再如,利用人工智能的语音识别软件对口头表达的文字记录,以及文字处理软件对输入计算机的文字进行拼写和语法的校对和更正,无法形成与口头表达或原始文字存在实质性差异的表达。同样,绘画机器人利用人工智能对绘画进行精确临摹的成果,由于未能与原画作产生可被客观辨别的差异,只属于复制件。但是,对于上文提及的应用人工智能的修图软件而言,由于在对照片或图片进行风格转换后,新图片与其原始状态相比已存在实质性差异,如果新图片是由人绘制的,则在形式上已属于演绎作品,此时需要将其纳入研究范围,以回答其是否构成作品等一系列后续问题。

2

研究路径的确定:

考察相关内容的产生过程


对于由人工智能生成,在表现形式上与人类作品相同的内容而言,应当根据著作权法的原理判断其是否确实属于作品。如果相关内容仅在表现形式上与人类作品相同,但实际上并不能被认定为作品,则自然无需再考虑如何确定作者身份和著作权的归属。

(一)以相关内容的产生过程为切入点

笔者认为,在对上述内容是否确实构成作品进行判断时,应当在暂不考虑主体的前提下,从相关内容的产生过程为切入点,分析它们是否符合独创性的要求。此处之所以强调“暂不考虑主体因素”和以“相关内容的产生过程”作为切入点进行分析,是为了避免形成逻辑循环。根据传统的著作权理念,只有人才能创作作品。任何源于人之外的内容即使在形式上属于作品,该内容也不能被著作权法承认为作品并提供保护。在前文所述的“猕猴自拍照案”中,露齿微笑的猕猴照片在形式上属于作品,同时猕猴具有一定智力的事实也毋庸置疑,猕猴在自拍时,很可能基于自己对影像美感的认识,进行了一定的选择与判断,从而决定了手持相机离自己的距离和按下快门的时机,属于动物的“智力活动”。这张猕猴自拍照未被认定为作品的原因,仅仅是其拍摄主体是猕猴而不是人。可见,对作品的认定原本需要考虑主体因素,但在讨论人工智能生成内容的定性时,如果一开始就纳入主体因素,势必会造成逻辑循环,即“因为主体不是人,所以相关内容不是作品;因为相关内容不是作品,所以它没有作者,无需认定作者和著作权归属”。而“暂不考虑主体因素”,并只考察“相关内容的产生过程”,就可以在“形式上与人类作品相同的内容”中,识别出那些不符合独创性要求的内容并将其排除出著作权保护的范围,这样以来,有可能被认定为作品的,只能是那些不仅在形式上与人类作品相同,而且产生过程符合独创性要求的内容。换言之,这些内容类似于“猕猴自拍照”,除了主体因素之外完全符合作品的构成要件。对此类内容,才需要进一步研究:是否应当突破作品必须源自于人的传统著作权理念,将其认定为作品,以及如何认定作者和确定著作权。按照上述方法,对人工智能所产生内容著作权问题的讨论既可以避免逻辑循环,也更加聚焦。

(二)人工智能生成的内容是应用算法、规则和模板的结果

从目前有关人工智能的各种报道和描述来看,至少在现阶段,人工智能生成的内容只是应用某种算法、规则和模板的结果,与为形成作品所需的智力创作相去甚远。以上文提及的修图软件为例,它可利用“深度神经网络”的人工智能,将照片或图片处理成印象派等各种绘画风格。如暂不考虑主体因素及处理过程,仅从结果来看,多数人都会以为是画家绘制而成。然而,该项人工智能对照片或图片的处理,与绘画者根据照片或图片创作同样风格画作的行为存在本质区别。

在艺术家眼中,就一张照片或图片而言,其影像或造型与印象派等风格的画作之间并不存在严格的一一对应关系。以同一照片或图片为基础,可以绘制出无数被称为印象派风格的画作。绘画者即使熟知印象派的画风,也了解将普通照片或图片绘制成印象派画作应当遵循的一般方法,绘制过程也为绘画者留下了发挥的空间。绘画者可以凭借自己对印象派的理解和感悟,在线条的位置、粗细和弯曲度方面作出选择,在造型、明暗、阴影和色彩等因素上进行判断和处理,以表达其独特的思想感情。由此产生的绘画具有个性化的特征:多名绘画者在具有相同专业水准的情况下,以同一照片或图片为基础,绘制成的印象派画作也会存在差异。即使对同一名绘画者而言,在绘制印象派画作之后,如果事隔几年后要求其再次将同一照片或图片绘制成印象派画作,除非其记忆力超群或将第一次绘出的印象派画作摆放在旁边,否则也很难绘制出与前一次画作几乎完全相同的画作。这正如认文字作品的作者如果因电脑故障无法打开未作备份的电子文档而被迫重写,也往往会感到重写后的文字与原文有所不同,原文中的一些精彩表述再难重现。这也就是为什么作者们总是对丢失其手稿等作品唯一载体的行为深恶痛绝。

上述现象正是“独创性”的体现——作品源于作者独立的、富有个性的创作,打上了其聪明才智的独特烙印,是作者精神与意识的产物。这就使著作权法意义上的创作有别于人们严格根据算法、规则和模板实施的行为,如使用密码本对文字进行加密或解密,在五线谱和简谱之间进行相互转换,使用微软图表软件(EXCEL)中的图表模板将数据转换成图表等。显然,这些行为都利用了智力成果——各种方法和计算公式,如密码系统的设计和破解,五线谱和简谱等记谱方法的发明,各种图表模板及与数据之间的转换程序,都需要投入智力劳动。但是,算法、规则和模板是否为智力成果,与应用算法、规则和模板的过程是否属于智力创作,产生的结果能否构成作品并无必然联系。如果将它们应用于原始材料之后,只要方法正确,无论由何人实施,获得的结果具有唯一性,就排除了实施者发挥聪明才智的可能性,导致相应的结果无法具有个性化的特征,从而不符合独创性的要求。例如,EXCEL中将统计数据转换为各类图表的代码化指令序列可作为计算机程序受到保护,但任何人使用该程序处理同一套统计数据,所能够获得的各类图表都是相同的,这些图表显然不能构成作品。

利用“深度神经网络”人工智能的修图软件对照片或图片进行风格处理时,本质上仍然是在实施一套优化后的算法,该算法使软件在分析了上千万张的图像后,通过图像的颜色、结构和纹理确定不同风格之间的对应关系,从而在较短的时间内实现图像处理。但是,无论这套算法多么复杂、先进和富有创意,也无论转换的规则是由程序员直接输入还是程序根据算法自动产生,采用该算法的修图软件一旦编制完成,使用不同的计算机应用该软件对相同的照片或图片进行风格转换,只要不是由于软件的缺陷而出现计算错误,所得到的结果不会有所不同。这就从根本上抹煞了处理过程的创作空间,排除了处理结果具有个性化特征的可能性。正如有技术专家所指出的,这种风格转换只是“让大众有了机器可以作画的错觉”。

即使是形式上比风格转换最接近人类创作的“机器人作画”,也无法符合独创性的要求。德国机器人实验室研发的机器人为真人绘制素描的视频新闻曾引轰动一时,甚至引发了“美术学院教谁去?”的疑问。但是,在美术学院的人体绘画课上,如果许多学生都以同一个人为模特进行绘画,每个人绘出的人物画会互不相同,各具特色,这反映了美术作品创作过程中的独特个性。而机器人之所以能绘制素描,无非是根据研发者预先确立的算法和编制的计算机程序,先用机器人自带的照相机对人脸进行拍摄,再提取其中的特征点,再将其矢量化为一些线段,最后将这些线段传给机器人的控制器,由末端执行器在纸上绘制肖像。由此可见,机器人素描的过程是高度程式化的,只要模特是同一人,在相同的照明条件下,在同一距离和位置上具有相同姿势和神态,被绘制出的素描肖像就别无二致。在有关机器人绘画的科技论文中,研究的对象是“人脸肖像轮廓提取算法”、“人脸肖像轮廓的细节处理算法”和“数据采集系统和机械控制系统设计”,均为定量化分析,说明“机器人作画”本质上仍然属于执行既定流程和方法,并通过计算获得确定的结果,与体现个性化的智力创作存在根本区别。

“自动新闻写作”则是综合运用算法与模板的结果,其关键在于针对某一类型文章,如财经新闻、体育新闻等开发出针对原始数据进行分析的算法,再将其分类套入内置的各种模板。以自动对美国职业篮球赛(NBA)进行直播报道的自动写作软件为例,虽然其生成的直播报道足以“以假乱真”,被球迷评价为由人工创作的比率高达90%,但它是基于开发者构建的球队“比分差函数”,运用由该函数的数据分片算法和数据合成算法,对数据进行分类,并填充到开发者事先预定的上百个模板中所产生的结果。“模板”是根据数据的类别以及历史 NBA 赛事的新闻报道制作的,类似于有固定格式、栏目和标题的表单,用于填入数据。如“以球队为报道对象”的模板包括“*队开局打出*比*的比分, 取得了*分的优势”、“双方杀的焦灼, 你来我往都有得分, 比分为*比*”、“*奋力打出*的攻击波将分差缩小到个位数”等。“以球员个人为主要报道对象”的模板包括“在*球员的带领下, 取得*分的领先优势”、“*队在*的带领下打出*比*的攻击波,一举将比分反超”、“双方打得相当胶着, *连投带罚接连得分, *也打得非常有活力”。显然,当软件根据函数和算法对原始信息进行筛选和计算后,将所得数据依对应关系填入模板之中,一篇新闻报道就形成了。它与前文所述的“机器人作画”一样,本质上仍然属于执行既定流程和方法的结果。

(三)人工智能的“学习”是确定规律的过程

具有“学习”能力是人工智能技术发展进步的标志。开发“阿尔法围棋”程序的“深度思维”公司首席执行官曾称该程序“拥有强大的自我学习能力……它是通过自我对局来优选最佳方法,这跟人类的思考方式一样”。然而,人工智能所具有的“学习”能力并不意味着应用这种“学习”成果生成内容的过程是创作,以及生成的内容是作品。它只意味着与程序设计者预先确定可直接得出结果的固有规则(如简谱与五线谱之间的对应关系)不同,拥有人工智能的程序可以通过对大量数据的分析,自己找出事物之中更为具体、细致的规律。毫无疑问,这种“学习”能力在数据处理方面具有极大的优势,但它仍然属于应用特定算法获取最佳结果的过程,其作用在于从无数可能性中找到唯一或者极为有限的正确路径。因此一些人工智能的研究者将人工智能的“学习”描述为:将神经——中枢——大脑的工作原理设计成一个不断迭代、不断抽象的过程,以便得到最优数据特征表示的机器学习算法。[1]290-291例如,“阿尔法围棋”程序的人工智能体现在它具有由“策略网络”和“估值网络”构成的“深度神经网络”。这种“神经网络”实际上是由简单处理单元构成的大规模并行分布式处理器。[2]1其中“策略网络”通过对人类对弈大数据分析,“搜索出更像人类高手该落子的位置”,“估值网络”对备选的落子位置进行后续计算,“推演出胜率最高的走法”,这是一种对从外界获取的信息进行的逐层加工的过程。[3]114

同样,相关研究表明:计算机程序之所以能“作曲”,是应用了统计学中的马尔可夫链(一种未来状态的概率只取决于当前状态的数学模型)选择音调。根据对大量音乐作品中音调之间的搭配与和谐关系的分析,可以发现其中的规律,比如当前的音调是C,则下一个音调为G的概率为70%,为E的概率为15%,为F的概率为10%,为A的概率为5%,不同的概率由不同的马尔可夫链模型所决定。这样,程序就可以通过三个步骤生成乐曲,首先是建立规则表和数学模型,然后是随机生成单个音符,最后是根据规则表和数学模型测试其和谐度,“通过不断重复生产和测试环节,越来越多有效音符被选择出来并组成了完整的乐曲”。如果将程序这种反复试错,筛选合格组合的过程称为“自我学习”,则它仍然是依据算法进行的有规律的运算过程。虽然因其初始因素(如第一个单音符的生成)具有随机性,因此程序设计者也无法准确预测最后的结果,但在重复该运算过程并输入相同初始数据的情况下,同一程序得出的结果是有限的。这正是人工智能生成内容的本质特征——是计算而非创作。[2] 398-389一篇文章在描述“机器作曲”时,其标题恰如其分地说明了一这点——《算出音乐来》。

由此可见,具有“学习”能力的人工智能与以往机械式处理手段的不同,在于能够根据算法分析数据并找出最优策略,再采取该策略产生最佳结果,而不是仅仅应用算法直接获取结果。但是,对最优策略的确定仍然是基于算法产生的,而且策略本身属于方法,落入了思想的范畴,不可能作为作品受到著作权法的保护。算法和计算机程序设计者也许无法准确地预测计算机运行程序并分析数据后能得出怎样的最优策略,但不同的计算机运行同一程序,根据同一算法分析相同数据,得出的最优策略是相同的或有限的,而不同的计算机对相同的数据采取该最优策略,获取的结果也是相同的。换言之,对相同的原始材料,人工智能运用相同的策略进行处理,其结果具有高度的可重复性,这正说明对策略的应用不具备个性化的特征。与之形成鲜明对比的是,不同作者即使遵循同一创作理念、原则或规律,使用相同原始素材创作的作品也会在内容上五花八门。这是因为创作理念、原则或规律仅仅属于创作背景或外部限定,它无法决定作品的内容。有时,作者打破惯例,不按常规的创作还会产生更佳的艺术效果。正因为是作者独特的个性和情感,甚至是稍纵即逝的灵感,而不是创作理念、原则或规律驾驭着创作活动,如果作品内容较为复杂,甚至连作者本人在遗失作品的唯一载体之后,往往也难以重新创作出相同的内容。在提出著名的“图灵测试”的论文中,阿兰·图灵引述了杰弗里·杰斐逊(Geoffrey Jefferson)教授对“机器会思考”的怀疑:

直至一部机器因思考和情感而不是通过随机排列符号而写出一首十四行诗或谱写一部协奏曲,我们才能认同机器等于同大脑。

从上述分析中可以得出一个结论,目前的“人工智能”本质上是应用“人”的“智能”,其生成内容的过程并不涉及创作所需的“智能”,因此并不能成为受著作权法保护的作品。日本政府设立的“知识产权战略本部”在一份报告中指出“一般认为,人工智能自动生成的内容不属于著作权的客体”,其原因就在于“人工智能自动产生的创作物(类似作品的信息),并非(日本)《著作权法》第2条第1项规定的‘表现思想或者情感的作品’,也就根本不存在对其享有的著作权”澳大利亚司法部下设的“澳大利亚版权审议委员会”曾在有关计算机软件版权保护的报告草案中建议澳大利亚《版权法》增加“计算机生成的作品”(computer-generated work)的作品类别,但遭到了“澳大利亚版权委员会”的反对,理由之一正是此类内容无法达到独创性的要求。“澳大利亚版权审议委员会”接受了该观点,在其发布的最终报告中,不再建议将诸如由报告撰写程序(类似于前文提及的自动新闻写作程序)生成的内容作为作品保护,而是建议创设邻接权的客体以提供保护,其用语也从“计算机生成的作品”改为“计算机生成的内容”(computer-generated material)。

在最早对“计算机生成的作品”进行规定的英国《版权法》中,“计算机生成的作品”被认定义为“在该作品没有作者的情况下,由计算机生成的作品”。该法第9条第3款规定:“对(由计算机生成的)作品的创作进行了必要安排的人”被视为“作者”。然而,世界知识产权组织的报告对此指出:该规定看来是建立在一个假设之上,即计算机可以在没有任何人类创造性贡献的情况下“创作”文学艺术作品,但是否真正存在能够不借助任何人类创造性贡献而创作出“作品”的计算机“智能”,则是存疑的。英国本国学者对此也持怀疑态度,认为“很难理解此种成果如何能够符合既有的独创性标准,特别是该标准要求作品应当是‘劳动、技巧或判断’的产物,更不用说符合欧盟有关要求作品是‘作者自己的智力创作成果’的要求了”。同时,将该条适用于上文提及的机器人写作、作画和作曲等情形,也会遇到难以克服的障碍。试问谁对“由计算机生成的作品”的“创作”进行了必要安排?是相关计算机程序的编写者还是该机器人或程序的使用者?如果是前者,则其获得了对计算机程序和运行该程序生成结果的双重权利,属于重复获利,有失公平。如果是后者,则意味着只要选择了某机器人或运行了某一程序就可获得著作权,显然是不合理的。

迄今为止,也只有一个涉及计算机游戏的英国案例适用了上述条款。在该案中,原告起诉被告抄袭了自己的计算机游戏,并主张计算机运行过程中呈现的画面属于“计算机生成的作品”,而原告的程序员则应被视为该作品的作者。对此,英国法院认为:

组成(电子游戏画面)的各帧画面都是计算机生成的作品,为创作作品进行必要安排的工作是由琼斯(原告的股东兼程序员,笔者注)承担的,因为他设计了游戏各要素的外观,还设计了游戏的规则和逻辑,由此产生了游戏的每一帧画面,他还编写了计算机程序。在这种情况下我确信琼斯对作品的创作进行了必要的安排,应当根据(英国《版权法》)第9条第3款的规定被视为作者。

显然,在该案法官的心目中,虽然程序员编写了计算机程序,也设计了游戏中人物、道具等各要素的画面,甚至是单幅的静止画面,但游戏在运行过程中形成的连续画面,并不是程序员直接创作的作品,而是“计算机生成的作品”,程序员并不是真正的作者,只能被“视为”作者。这样的判断实不足取,在游戏运行时,屏幕上显示的所有连续画面,都是计算机程序根据玩家的操作调用预先输入的各要素图像,并加以组合形成的。虽然连续画面的内容会随着不同玩家的不同选择有些区别,但不可能超越程序员对游戏进程的预先设立的各种要素的组合,因此当然属于由程序员等作者们创作的作品,计算机只是在技术意义上“生成”了它们。我国和其他国家的司法实践也认为计算机游戏画面是人创作的作品,并未将其认定为“计算机生成的作品”。如我国法院就曾认定“游戏画面由游戏引擎按照既定规则调取开发商预先创作的游戏素材自动生成,……(该)连续画面构成类电影作品,其著作权属于游戏开发商”,“网络游戏中连续活动画面因操作不同产生的不同的连续活动画面,其实质是因操作而产生的不同选择,并未超出游戏设置的画面,不是脱离游戏之外的创作”。由此可见,英国《版权法》对所谓“计算机生成的作品”的定义和权利归属的规定,实不足为我国所仿效。

3

区分对人工智能生成

内容的实然定性与应然定性


综上所述,对于人工智能生成的内容而言,即便在表现形式上与人类创作的作品几无差别,如机器人生成的人像素描和财经报道等,由于是应用算法、规则和模板的结果,其生成过程没有给人工智能留下发挥其“聪明才智”的空间,不具有个性特征,该内容并不符合独创性的要求,不能构成作品。

上文在讨论人工智能生成内容的定性时,暂时排除了主体的因素。并得出了此类内容不构成作品的结论。现在再考虑主体因素,也可以从不同的角度得出相同结论。著作权法的立法目的是鼓励作品的创作。实现鼓励效果的途径,则是通过赋予作者复制权、发行权和信息网络传播权等一系列权利,使作者能够在法律上制止他人未经许可以复制、发行、信息网络传播等方式利用作品,确保他人在利用作品时经过作者许可并向作者支付报酬,从而使作者从创作中获得应有的回报,能够体面地生活,保持继续创作的动力,并为志在创作的年轻一代产生良好的示范效应。那么,谁能在这套精心设计且十分复杂的法律机制之中受到鼓励呢?当然只可能是人。郑成思教授对此指出:不论何种人持何种看法,在认定版权制度的本质是鼓励用头脑从事创作之人这一点上,意见是一致的。[4]31-32无论是动物还是机器,都不可能因著作权法保护作品而受到鼓励,从而产生创作的动力。正因为如此,“作品是作为有血有肉的自然人对于思想观念的表达;……由非人类‘创作’的东西不属于著作权法意义上的‘作品’” [5]29我国《著作权法》第2条将享有著作权的主体限定为“中国公民、法人或者其他组织”和符合条件的“外国人、无国籍人”,印证了著作权法的立法目的。美国版权局要求被登记的作品“必须由人类创作”,并将“在没有任何源于人类作者的智力投入或参与的情况下,由机器以及随机或自动运行的纯粹机械过程生成”的成果排除出可登记范围,美国法院认定“猕猴自拍照”不构成作品,也鲜明地反映了这一立场。因此,人工智能生成的内容不构成作品,属于法律对其的应然定性。

然而,对于那些由人工智能生成的,但在表现形式上与人类创作的作品类似的内容而言,如果人工智能的操控者并未披露其真实的生成过程,相反,此人还在该内容上署名,对外表明自己是创作者,则由于署名有推定作者身份的法定效力,除非质疑者有相反证据证明该内容源自人工智能对算法、规则和模板的运用,则在实然状态下,该内容仍然会被认定为作品并受到著作权法的保护,人工智能的操控者也将被认定为作者并享有一系列著作人身权和著作财产权。日本“知识产权战略本部”在否定了所谓“人工智能创作物”能作为作品受现行日本《著作权法》保护的可能性之后,又认为“然而,人类的创作物和人工智能创作物在外观上通常难以区分。基于此,除去明显是人工智能创作物的情形,应当与人类的创作物进行相同的对待。……人工智能创作的音乐、小说等内容也应当受到著作权的保护”,这实际上是指出了有别于法律规定的实然状态。

这种情况的出现,说明人工智能给著作权保护增加了一些复杂性,但尚不足以对著作权制度形成真正的挑战,因为它本质上属于证据规则的范畴,在以往也并不罕见。著作权法对作品构成的相关规定并不会因此改变,也无需改变。在前文提及的“猕猴自拍照案”中,如果摄影师发布照片时声称是自己拍摄,由于现场并无他人,猕猴当然也不会开口反驳,这张猕猴露齿微笑的照片当然会被认定为是摄影师的作品,真相可能永远无人知晓。同样,诗人晚年将其早年不为人知的诗歌投稿刊出,没有读过早年相同诗歌的人们都会认为诗人创作了新作品。但这并不意味着著作权法承认动物的“智力成果”是作品,或者抄写之前的诗歌属于创作。是信息的不对称造成了在作品认定方面应然状态与实然状态的对立。

那么,对于在应然状态下不构成作品的由人工智能生成的内容,能否可视人工智能的研发者或使用者为创作者呢?有学者主张,可比照著作权法中视法人为作者和将著作权归属于投资者的规定,“将人工智能的所有者视为作者”。对此需要指出的是,著作权法的上述规定,是以相关内容已构成作品为前提的。如果内容产生的过程并不属于创作,相关内容并不是作品,又谈何通过法律的拟制将未参与创作者视为作者呢?在上述“猕猴自拍照案”中,当摄影师自己宣布涉案照片为猕猴自拍时,就从根本上否定了该照片属于作品的可能性,此时无论该照片在形式上与人类拍摄的照片多么近似,都不可能视摄影师为作者。

4

结语


正如莎士比亚在《哈姆雷特》中所言,“人是宇宙的精华,万物的灵长”。人的创造性思维,人的灵感与个性,是作品创作中不可或缺的因素,“那些最具特色、最有生命力的成功之作往往只产生在难得而又短暂的灵感勃发的时刻”。迄今为止的人工智能只能按照人类预先设定的算法、规则和模板进行计算并生成内容。无论这种过程多么复杂,其结果多么接近作品,终究只是如来佛手中的孙悟空,无法突破如来佛的五指手掌。因此,一篇研究人工智能生成内容著作权保护的文章所称的“机械在作品创作过程中发挥的作用——尤其是对独创性部分所作的贡献——日益超过人类,甚至完全取代人类的精神劳动”,恐怕仍然是对未来的幻想,而不是现实。当然,如果这一天真的到来,面临挑战甚至威胁的,将是整个人类社会。即使不去想象此类人工智能是否会演化成科幻电影《终结者》中的杀人机器,也应考虑一本世界著名计算机教材对此表达的忧虑:“看来人工智能领域的大规模成功——创造出人类级别乃至更高的智能——将会改变大多数人类的生活,我们工作和娱乐的真正本质将会被改变,我们对于智能、意识和人类未来命运的观点也会如此。在此层次上,人工智能系统会对人类的自主性、自由乃至生存造成更为直接的威胁”。[6]878与之相比,著作权制度受到的冲击大约可以忽略不计了。

系统分类: 人机界面   |   用户分类: 无分类   |   来源: 无分类

    阅读(239)    回复(0)